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Abstract. The fractal dimension is a measure of complexity which
provides structural and spatial information of an object. This physical
measurement has been used in the evaluation of several structural
properties of the objects and phenomena of the Universe. The Universe
contains billions of galaxies, which are large systems of stars and cloud
of gases; galaxy classification permits to understand the origin and
evolution of the Universe. In this work we present an experimental
study for image-based galaxy classification using features extracted
with principal component analysis, and combining them with the
measure of Haussdorf-Besicovich fractal dimension. The classification
stage was performed using well-known machine learning algorithms:
C4.5, k-nearest neighbors, random forest and support vector machines;
considering the three main types of galaxies: elliptical, spiral and
irregular. Experimental results using 10-fold cross-validation show that
the fractal dimension value allows to improve the galaxy classification
yielding an accuracy of 86.71% using the random forest classifier.
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1 Introduction

Astronomy has a long history of acquiring and analyzing enormous quantities
of data. As many other fields, this science has become very data-rich due to
advances in telescope, detector, and computer technology. Recently, numerous
digital sky surveys across a wide range of wavelengths are producing very large
image databases of astronomical objects. For example, the Large Synoptic Sky
Survey will produce billions of galaxy images.

Therefore, there is a need to build robust and automated tools for processing
astronomical data, particularly for the analysis of the morphology of celestial
objects such as galaxies. Galaxy classification is the first step towards a greater
understanding of the origin and evolution process of the Universe, and to discover
physical properties related to dark matter [33]. Edwin Hubble in 1926 devised
a formal galaxy classification scheme, known as the Hubble tuning-fork [1].
This scheme grouped the galaxies based on their shape into three main types:
elliptical, spiral and irregular. Elliptical galaxies have the shape of an ellipsoid.
Spiral galaxies are divided into ordinary and barred: ordinary spirals have an
approximately spherical nucleus, while barred spirals have an elongated nucleus
that looks like a bar. Finally, irregular galaxies do not have an elliptical or spiral
shape [1].

On one hand, visual inspection for classifying galaxies has been done
traditionally by experts, but this time-consuming process requires several skills
and high experience. On the other hand, automatic classification methods
allow to analyze thousands of images in seconds, also these approaches are
more objective and without of prejudices that probably are present in human
methodology when looking at galaxy images [2].

Several approaches have been proposed for automatic image analysis and
galaxy classification using machine learning and computer vision techniques.
Many of this research work has been focused on artificial neural networks [2,
7, 17, 31], decision trees [24, 28], instance-based methods [30], kernel methods
[16], among others. Recently, some interesting works have been introduced
using new approaches. For example, the sparse representation technique and
dictionary learning [11], rotation invariant descriptors [9], quaternion polar
complex exponential transform moments [21], and deep neural networks [12,
25, 8, 22].

In this work, we hypothesized that fractal dimension quantification can be
used in order to improve accuracy for classification of some types of galaxies
and then justify their study in depth. Thus, we use the following methodology,
composed by three stages, to perform galaxy classification: image processing;
feature extraction using fractal dimension analysis and principal component;
and classification using machine learning algorithms.

The paper is organized as follows. The next section provides a theoretical
background on the fractal dimension analysis. Section 3 introduces the
methodology for image-based galaxy classification. Section 4 describes
experimental results and Section 5 presents a discussion. Finally, Section 6
outlines conclusions and directions for future work.
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2 Fractal Dimension

Fractal dimension provides structural and spatial information of an object
which could be a result of reaction or aggregation processes [23, 13, 3]. The
Haussdorf-Besicovich fractal dimension (HB-fd) by box counting method [13,
19, 18, 20, 27] is a technique to provide information of the complexity of universe
objects. It is necessary to use a spectrum of dimensional measures to characterize
the total geometry for huge clusters of bright objects.

The fractal dimension formalism is based on the definition of the so-called
multifractal spectra, this describes the evolution of the probability distribution
of fractal structures. The analysis is performed on an image which is divided
into small boxes until ε0, then the probability of decomposition of the each box
(i,Q) is calculated by:

Pi,Q(ε) =
xi,Q∑
xi,Q

∝ εα, (1)

where xi,Q is the average height of shapes deposition inside the box of size
ε, and α is the singularity of the subset of probabilities. It is suggested that
the number of times that α in Pi,Q takes a value between α′ and dα′, defined

as dα′ρ(α′)ε−f(α′) where f(α′) is a continuous function. Then, the number of
boxes of ε with the same probability Pi,Q(ε) is given by:

Nα(ε) ∝ εf(α), (2)

where f(α) is the fractal dimension of the subset α [13, 19, 20, 27, 6]. After that,
the probability Pi,Q(ε) gives the rise of the partition function:

I(Q, ε) =

N(ε)∑
i=1

[Pi,Q(ε)]
Q = ετ(Q), (3)

where Q is the moment order. We used the scaling exponent defined by Halsey
et al. [19, 18] where τ(Q) can take a width range of values measuring different
regions of the set. The standard procedure [6] takes into account the generalized
box-counting dimension defined as:

DQ =
1

1−Q
lim
ε→0

lnI(Q, ε)

ln(ε0/ε)
=

τ(Q)

Q− 1
. (4)

This spectrum generated by an infinite set of dimensions, measures the
scaling structure as a function of the local pattern density. If Q=0 the generalized
fractal dimension represent the classic fractal dimension, i.e. Df = DQ=0. The
exponent τ(Q) can be obtained from the slope of lnI(Q, ε)- lnε curve. Details
of multi-fractal spectrum measures are described in [6, 5].

We select the case of Df = DQ=0 as the parameter of order in the images,
where ϵ is the size of the box which acquire successively smaller values of length
until the minimum value of ϵ0. Then, the probability to find is given by:
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I(Q, ϵ) =

N(ϵ)∑
i

[Pi,Q]
Q, (5)

where Q is a parameter which gives the width of the spectrum and when Q = 0
the generalized fractal dimension represents the classical fractal dimension. In
this work, the method was performed on gray scale images and using default
sampling sizes. The distribution of particles at mesoscopic scales [35, 14, 10] or
on macroscopic scales such as the famous fractality of the Britain island [23]
were also taken into account for the parametrization.

3 Methodology for Galaxy Classification

The process to perform galaxy classification is divided into three main stages:
1) image processing, 2) feature extraction and 3) classification. In order to
standardize the image data set, the images were rotated, centered and cropped,
as we have already introduced in [7]. After that, features were extracted by
calculating the fractal dimension, and principal component analysis. Finally,
the numerical vectors were used as input parameters for the machine learning
algorithms to classify the galaxies according to the main three types. Next
subsections describe each stage in detail.

3.1 Image Processing

An image processing stage was performed to create a standardized image data
set, which permits to extract some useful information from it. This process has
been introduced in early work [7], therefore we only give a brief description.

The first step is to distinguish the galaxy contained in the image, then, a
threshold is applied to obtain the pixels that form the galaxy: values greater
than the threshold. Later, the images are rotated considering their main axis,
which is given by the largest eigenvalue of the covariance matrix of the points
in the galaxy image. Finally, the images are resized to 128x128 pixels. Figure 1
shows examples of original and standardized images for each type of galaxy.

3.2 Feature Extraction

Before performing classification, galaxy imagery must be represented as
numerical vectors (features), which contain meaningful information. However,
one of the main challenges when performing this task is to find the best
method for characterizing the structural or geometrical properties of galaxies.
In this study we have calculated the fractal dimension for each galaxy, which
is considered as one of the attributes. Also, we used principal component
analysis (PCA) to reduce the dimensionality of the images and to find a set
of significant features.
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Fig. 1. Galaxy images used for experiments. Left: Original images, Right:
Standardized images.

Fractal Characterization. The generalized fractal dimension was measured
on different samples of the three main types of galaxies, following the procedure
described in section 2.

Figure 2(a) presents the fractal dimension of 17 elliptical galaxies obtaining a
fractal dimension value between 1.80− 1.83. The behavior of 104 spiral galaxies
is presented in Figure 2(b), with values between 1.77− 1.78. Finally, Figure 2(c)
shows the behavior of 10 irregular galaxies with values between 1.774− 1.776.

The ranks of the fractal dimension of these three types of galaxies are
evidently different. The most of HB-fd of spiral galaxies are in a very similar
range; irregular galaxies exhibit one dimension which correspond to structural
properties of homogeneity[23]; while HB-fd on elliptical galaxies indicates
structural wealth. The fractal dimension value for each galaxy was used as a
parameter in the classification stage.

Principal Component Analysis. Principal component analysis (PCA) is a
mathematical method that converts a (large) data set into a smaller number
of variables called principal components (patterns). PCA, in machine learning,
is an unsupervised method that reduces data while retaining meaningful
patterns. These patterns are considered as a set of attributes that permit to
differentiate the objects [32]. The first principal component accounts the largest
variability in the data, and each subsequent component accounts the remaining
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Fig. 2. In figure (a) black dots show the behavior of fractal dimension of elliptical
galaxies. In figure (b) blue stars show the behavior of spiral galaxies. In figure (c) red
squares presents the corresponding behavior related to irregular galaxies.

ones. This variability permits to rank the principal components according
to their usefulness.

In our study, we have used 8 and 12 principal components, which represent
about 80% of the information in original and standardized images, respectively;
and 21 and 29 principal components, which represent about 90% of the
information in the same way (see Figure 1 3). The projection of these principal
components onto the original galaxy images were used as parameters for the
classification stage.

3.3 Classification

For the classification stage we considered four representative algorithms of
the supervised machine learning literature: a decision tree classifier (C4.5),
an instance-based method (k-nearest neighbors), an ensemble classifier
based on bootstrapping (random forest) and a linear discriminant (support
vector machines).

Starting from a sample of labeled images, classification methods learn a
function that aims to map unseen images to labels. In this study the labels
are associated to the three main galaxy types of the Hubble sequence (i.e.,
elliptical, spiral or irregular). Before feeding images into classifiers, they must be
represented as numerical vectors, thus, two representations were evaluated in this
study: (i) The projection of images onto the first principal components, and (ii)
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Fig. 3. Amount of cumulative variance of the principal components. Left: Original
images. Right: Standardized images.

The same projection plus the Haussdorf-Besicovich fractal dimension (HB-fd)
value, as an additional feature. Since the HB-fd is a physical measurement
employed to describe structural properties of complex systems, our hypothesis is
that including it in the representation of images will lead to better classification
performance [23, 3]. The remainder of this section briefly describes the considered
classification algorithms.

C4.5. It is an algorithm for learning decision tree classifiers [29]. Nodes of a
decision tree are associated to thresholds on the attribute values in such a way
that the tree induces a partition of the input space. Leaf nodes correspond
to samples of the same class. When an unseen image has to be classified
its associated vector representation is passed throughout the tree, the label
corresponding to the leaf node reached by the feature vector is assigned to
the image. The reader is referred to [29] for a more detailed explanation
of this classifier.

k-Nearest Neighbors. The k-nearest neighbors (k-nn) classifier is an intuitive
method that relies on similarities among instances to determine their class.
k-nn memorizes a training set of labeled instances by storing them. When an
unseen image needs to be classified, its feature vector is compared to the stored
ones, then the k-most similar instances (the k-nn) are identified and used to
determine the class of the image. Commonly the memory-based class of the
nearest neighbors is assigned to a new instance. The similarity among instances
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can be measured in many different ways, in this work we used the inverse of
the Euclidean distance as similarity measure. An extensive treatment of k-nn is
available in [26].

Random Forest. Random Forest (RF) is a committee or ensemble classifier
formed by decision trees. Ensemble classifiers combine the outputs of many
individual models trained for the same task, but that focus on different aspects
of the problem. In the case of RF, decision trees are considered, each trained
on a different subset of samples and dimensions of the feature vectors. When
classifying a new instance, all of the individual models provide a prediction
and RF returns the average output of the individual learners. RF, as other
ensemble models, have theoretical bounds that guarantee the committee of
learners outperforms individual models. Further information about RF can be
found in [4].

Support Vector Machines. Support Vector Machines (SVMs) is a type
of linear discriminant that guarantees obtaining the optimal hyperplane in
the input-vector space that separates instances form two classes [34]. Linear
discriminant aim at learning a linear function in the input space that separates
examples of two classes. SVM finds such a function by maximizing the margin
that separates instances from different classes. It provides a sparse solution as
the decision function depends only in a subset of instances (the support vectors),
which are the closest instances to the decision margin. SVM guarantees obtaining
the optimal separating hyperplane in training data when the problem is linear
separable. When linear separability does not hold, the kernel trick is used to
map the original input space into another high-dimensional one where a linear
function can separate the classes.

4 Experimental Results

The data set consisted of 131 images of galaxies: 17 elliptical, 104 spiral and 10
irregular; which were taken from different data bases of the web.

The experiments were carried out using Weka, a software package that
implements machine learning algorithms for performing classification tasks [15].
We tested the following algorithms: decision trees, k-nearest neighbors, random
forest and SVM. For the case of decision trees, and random forest we used default
parameters. For the case of k-nn we used three neighbors with weighted distance,
and we used a two-degree polynomial kernel for SVM.

In order to measure the overall accuracy of the machine learning algorithms,
we used 10-fold cross-validation for all the experiments; that is, the original
data set is randomly divided into ten equally sized subsets and performed 10
experiments, using in each experiment one of the subsets for testing and the
other nine for training.

Tables 1 and 2 show the accuracy for each learning algorithm using the
original images and the standardized ones, respectively. These results were
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Table 1. Accuracy for original images using different number of principal components
(PCs) and using the PCs plus the fractal dimension value (FDV). The best results are
in bold.

PCs PCs + FDV

Algorithm 8 21 9 22

C4.5 71.29 70.83 71.29 70.52
3-nn 77.55 81.82 79.22 81.67
RF 78.31 80.91 80.30 80.60
SVM 79.38 79.53 79.38 79.99

mean 76.63 78.27 77.54 78.20

Table 2. Accuracy for standardized images using different number of principal
components (PCs) and using the PCs plus the fractal dimension value (FDV). The
best results are in bold.

PCs PCs + FDV

Algorithm 12 29 13 30

C4.5 77.55 74.34 78.61 76.33
3-nn 81.06 72.81 78.92 75.87
RF 85.95 85.33 85.94 86.71
SVM 79.84 73.27 85.49 83.20

mean 81.10 76.44 82.24 80.52

obtained by averaging the results of five runs of 10-fold cross-validation for
each algorithm. On one hand, as we can observe from table 1, the best results
were obtained by 3-nearest neighbors, with 81.82% accuracy using only PCs,
and 81.67% accuracy using PCs plus the fractal dimension value. On the other
hand, we can see from Table 2 that random forest obtained the best results with
85.95% and 86.71% accuracy, using PCs and PCs plus the fractal dimension
value, respectively.

Tables 3 and 4 present the accuracy of the algorithms using only one feature,
that is, 1 principal component (1-PC) and the fractal dimension value. Also,
we show the results using 1-PC plus the fractal dimension value. From these
tables, we can observe that random forest obtained five of the best results,
while C4.5 obtained the other one. In addition, we can see that, on average,
classification using the fractal dimension value is better than using 1-PC,
considering standardized images.

5 Discussion

Figure 4 presents a summarizing of the HB-fd values for the three types of
galaxies. As we can observe from this Figure, the characterization by fractal
dimension helps to distinguish the type of galaxy.

Results presented in Tables 1 and 2 show that the best results are obtained
when standardized images and fractal dimension are used, particularly using
random forest with 29 PCs plus the fractal dimension value. In addition, it
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Table 3. Accuracy for original images using 1 principal component (1 PC) and the
fractal dimension value (FDV). The best results are in bold.

Algorithm 1 PC FDV 1 PC + FDV

C4.5 79.68 77.09 79.38
3-nn 76.02 70.22 74.04
RF 74.34 65.79 74.34
SVM 79.38 79.38 79.38

mean 77.35 73.12 76.78

Table 4. Accuracy for standardized images using 1 principal component (1 PC) and
the fractal dimension value (FDV). The best results are in bold.

Algorithm 1 PC FDV 1 PC + FDV

C4.5 78.92 78.46 75.56
3-nn 74.49 78.16 77.24
RF 68.39 75.11 76.17
SVM 79.38 79.22 78.62

mean 75.29 77.74 76.90

Fig. 4. Fractal dimension for three galaxies: (a) shows an example of an elliptical galaxy
with fractal dimension value of HB − fd = 1.8226; (b) shows an image of an spiral
galaxy, its fractal dimension value is HB−fd = 1.7886; finally, (c) presents an example
of an irregular galaxy with a value of HB − fd = 1.7764.

can be observed that SVM was the algorithm with the largest improvement of
accuracy when using PCs plus the fractal dimension value. Specifically, a better
evaluation (from 73.27% to 85.29%) is obtained by using 29 and 30 features.

116

Jorge de la Calleja, Elsa de la Calleja, Hugo Jair Escalante, et al.

Research in Computing Science 152(10), 2023 ISSN 1870-4069



Table 5. Confusion matrix for the best algorithm to classify elliptical galaxies:
3-nearest neighbors.

Galaxy type Elliptical Spiral Irregular Accuracy per type

Elliptical 15 2 0 88.9 %
Spiral 12 92 0 88.4 %
Irregular 1 9 0 0 %

Table 6. Confusion matrix for the best algorithm to classify spiral galaxies: Random
forest.

Galaxy type Elliptical Spiral Irregular Accuracy per type

Elliptical 11 6 0 64.7 %
Spiral 0 104 0 100.0 %
Irregular 0 10 0 0 %

Table 7. Confusion matrix for the best algorithm to classify irregular galaxies: C4.5.

Galaxy type Elliptical Spiral Irregular Accuracy per type

Elliptical 9 8 0 52.9 %
Spiral 8 91 5 87.5 %
Irregular 2 4 4 40.0 %

In fact, in average among the different classifiers, the performance classification
improved by more than 4% when including the fractal dimension value as a
feature.

In Tables 5, 6 and 7 we present the confusion matrix for the best result
obtained to classify elliptical, spiral and irregular galaxies, respectively. From
these results we can see that 3-nearest neighbors was the best algorithm to
classify elliptical galaxies with 88.9% accuracy; random forest was able to classify
with 100% accuracy of the spiral galaxies; while C4.5 was the best algorithm to
classify irregular galaxies with 40% accuracy. We can also observe that none of
the best results for elliptical and spiral galaxies have classified irregular galaxies
correctly. On the other hand, when irregular galaxies are classified correctly,
the accuracy of elliptical decreases significantly; while the accuracy for spiral
galaxies remains about 87% accuracy.

6 Conclusions

In this paper we have introduced the fractal dimension analysis to perform
image-based galaxy classification. The fractal dimension value contributes to
improve the classification accuracy for the three main types of galaxies, despite
using a small data set of images for training the classifiers. The best results were
obtained by 3-nearest neighbors and random forest using standardized images
with PCs and the fractal dimension value. Directions for future work includes
to identify more types of galaxies and testing some approaches of deep learning
with fractal dimension analysis.
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